CaraML Docs
CaraML Homepage
  • Introduction
    • What is CaraML?
    • Architecture
      • Feature Store Architecture
      • Models Architecture
      • Routers Architecture
      • Experiments Architecture
      • Pipelines Architecture
    • Core Concepts
      • Models Concepts
      • Router Concepts
      • Experiment Concepts
  • User guides
    • Projects
      • Create a project
      • Managing secrets
    • Feature Store
    • Models
      • Create a Model
        • Custom Model
      • Deploy a Model
        • Deploying a Model Version
        • Severing a Model Version
        • Configuring Transformer
          • Standard Transformer
            • Standard Transformer Expressions
            • Standard Transformer UPI
          • Custom Transformer
        • Redeploying a Model Version
      • Deleting a Model
      • Configuring Alerts
      • Batch Prediction
      • Model Schema
      • Model Observability
    • Routers
      • Creating a Router
        • Configure general settings
        • Configure routes
        • Configure traffic rules
        • Configure autoscaling
        • Configure experiment engine
        • Configure enricher
        • Configure ensembler
        • Configure logging
      • Viewing Routers
        • Configuration
        • History
        • Logs
        • More actions
      • Edit Routers
      • Monitoring router
        • Monitor Router Performance
        • Configure Alerts
      • Undeploying Router
      • Redeploying Router
        • Redeploy undeployed router
        • Redeploy version from history
        • Redeploy version from version details page
      • Deleting Router
        • Deleting router versions
        • Deleting router versions from details page
        • Deleting routers
      • Deleting Emsemblers
        • Delete an Ensembler without related entity
        • Delete an Ensembler with active entities
        • Delete an Ensembler with inactive entities
    • Experiments
      • View Experiment Settings
      • Modify Experiment Settings
      • Creating Experiments
      • Viewing Experiments
      • Modifying Experiments
      • Running Experiments
      • Monitoring Experiments
      • Creating Treatments
      • Viewing Treatments
      • Modifying Treatments
      • Creating Segments
      • Viewing Segments
      • Modifying Segments
      • Creating Custom Segmenters
      • Viewing Custom Segmenters
      • Modifying Custom Segmenters
    • Pipelines
  • Tutorial and Examples
    • Model Sample Notebooks
      • Deploy Standard Models
      • Deploy PyFunc Model
      • Using Transformers
      • Run Batch Prediction Job
      • Others examples on Models
    • Router Examples
    • Feature Store Examples
    • Pipeline Examples
    • Performing load test in CaraML
    • Best practice for CaraML
  • CaraML SDK
    • Feature Store SDK
    • Models SDK
    • Routers SDK
    • Pipeline SDK
  • Troubleshooting and FAQs
    • CaraML System FAQ
    • Models FAQ
      • System Limitations
      • Troubleshooting Deployment Errors
      • E2E Test
    • Routers FAQ
    • Experiments FAQ
    • Feature Store FAQ
    • Pipelines FAQ
    • CaraML Error Messages
  • Deployment Guide
    • Deploying CaraML
      • Local Development
    • Monitoring and alerting
      • Configure a monitoring backend
      • Configure an alerting backend
    • Prerequisites and Dependencies
    • System Benchmark results
    • Experiment Treatment Service
  • Release Notes
    • CaraML Release Notes
Powered by GitBook
On this page
  • Prerequesites
  • Provision k3d cluster
  • Install Merlin
  • Check Merlin installation
  1. Deployment Guide
  2. Deploying CaraML

Local Development

PreviousDeploying CaraMLNextMonitoring and alerting

Last updated 1 year ago

In this guide, we will deploy Merlin on a local K3d cluster.

Prerequesites

  1. Kubernetes

    1. In this guide, we will use k3d with LoadBalancer enabled

  2. Kubernetes CLI (kubectl)

  3. Helm

Provision k3d cluster

First, you need to have k3d installed on your machine. To install it, please follow this .

Next, create a new k3d cluster:

export CLUSTER_NAME=merlin-cluster
export K3S_VERSION=v1.26.7-k3s1
k3d cluster create $CLUSTER_NAME --image rancher/k3s:$K3S_VERSION --k3s-arg '--disable=traefik,metrics-server@server:*' --port 80:80@loadbalancer

Install Merlin

You can run to install Merlin and it's components:

# From Merlin root directory, run:
./scripts/quick_install.sh

Check Merlin installation

kubectl get po -n caraml
NAMESPACE         NAME                                        READY   STATUS    RESTARTS   AGE
caraml            merlin-7bd99fd784-kb4ls                     2/2     Running   0          10m
caraml            merlin-7bd99fd784-pwcwz                     2/2     Running   0          10m
caraml            merlin-merlin-postgresql-0                  1/1     Running   0          10m
caraml            merlin-mlflow-656fbd57cf-45fqp              1/1     Running   0          10m
caraml            merlin-mlflow-postgresql-0                  1/1     Running   0          10m
caraml            merlin-mlp-688667fcdb-lpq52                 1/1     Running   0          10m
caraml            merlin-mlp-postgresql-0                     1/1     Running   0          10m

Once everything is Running, you can open Merlin in . From here, you can run Jupyter notebook examples by setting merlin.set_url("merlin.mlp.${INGRESS_HOST}.nip.io").

documentation
quick_install.sh
http://merlin.mlp.${INGRESS_HOST}.nip.io/merlin