CaraML Docs
search
Ctrlk
CaraML Homepage
  • Introduction
    • What is CaraML?
    • Architecturechevron-right
    • Core Conceptschevron-right
  • User guides
    • Projectschevron-right
    • Feature Store
    • Modelschevron-right
    • Routerschevron-right
    • Experimentschevron-right
    • Pipelines
  • Tutorial and Examples
    • Model Sample Notebookschevron-right
      • Deploy Standard Models
      • Deploy PyFunc Model
      • Using Transformers
      • Run Batch Prediction Job
      • Others examples on Models
    • Router Examples
    • Feature Store Examples
    • Pipeline Examples
    • Performing load test in CaraML
    • Best practice for CaraML
  • CaraML SDK
    • Feature Store SDK
    • Models SDK
    • Routers SDK
    • Pipeline SDK
  • Troubleshooting and FAQs
    • CaraML System FAQ
    • Models FAQchevron-right
    • Routers FAQ
    • Experiments FAQ
    • Feature Store FAQ
    • Pipelines FAQ
    • CaraML Error Messages
  • Deployment Guide
    • Deploying CaraMLchevron-right
    • Monitoring and alertingchevron-right
    • Prerequisites and Dependencies
    • System Benchmark results
    • Experiment Treatment Service
  • Release Notes
    • CaraML Release Notes
gitbookPowered by GitBook
block-quoteOn this pagechevron-down
  1. Tutorial and Exampleschevron-right
  2. Model Sample Notebooks

Deploy Standard Models

Try out the notebooks below to learn how to deploy different types of Standard Models to Merlin.

hashtag
Deploy SKLearn Model

Logomerlin/examples/sklearn/SKLearn.ipynb at main · caraml-dev/merlinGitHubchevron-right

hashtag
Deploy XGBoost Model

Logomerlin/examples/xgboost/XGBoost.ipynb at main · caraml-dev/merlinGitHubchevron-right

hashtag
Deploy Tensorflow Model

Logomerlin/examples/tensorflow/Tensorflow.ipynb at main · caraml-dev/merlinGitHubchevron-right

hashtag
Deploy Pytorch Model

Logomerlin/examples/pytorch/Pytorch.ipynb at main · caraml-dev/merlinGitHubchevron-right
PreviousModel Sample Notebookschevron-leftNextDeploy PyFunc Modelchevron-right

Last updated 1 year ago

  • Deploy SKLearn Model
  • Deploy XGBoost Model
  • Deploy Tensorflow Model
  • Deploy Pytorch Model